Nicolaus Copernicus
Nicolaus Copernicus (1473-1543) (in Polish, Mikotaj Kopernik) was a Polish mathematician and astronomer, best known for his heliocentric theory of the solar system. The heliocentric theory, also known as the Copernican system, holds that the sun is at the center of the universe, and that the earth rotates on an axis and revolves around the sun. Copernicus published his theory in De Revolutionibus Orbium Coelestium, often considered to be the starting point of the scientific revolution.
In Copernicus’s lifetime, the Ptolemaic theory of the solar system was accepted as accurate. Ptolemy had reasoned that the earth was motionless and was situated at the center of the universe. Copernicus challenged Ptolemy’s theory by formulating his own system, the heliocentric, or “sun-centered,” theory. The heliocentric theory transferred to the sun functions previously given to the earth. The major principles of Copernicus’s theory are that the earth revolves around the sun yearly while rotating daily on its own axis. The movement of the earth is not apparent because we travel with it. Copernicus based his system on careful mathematical calculations, as well as by drawing on the ideas of ancient Greek and Arabic astronomers. His major work, De Revolutionibus Orbium Coelestium, or Concerning the Revolutions of the Celestial Spheres (1543), changed the existing notions of time and the universe. Copernicus did not publish his major work until the year of his death because he feared opposition from the religious establishment.
Background and Education
Nicolaus Copernicus was born into a successful family of merchants in Torun, Poland, on February 19, 1473. Debate over his nationality arises from the fact that West Prussia, including Torun, was ceded to the Kingdom of Poland following a conflict with the Teutonic Knights that ended in 1466. Though Copernicus was from a German family, he was born a Polish subject. He was taken into the care of his uncle, Bishop Lucas Watzenrode, after the early deaths of his parents. In 1491, Copernicus enrolled at the Jagiellonian University of Krakow where he studied astronomy and the liberal arts. Through the influence of his uncle, Copernicus was appointed a church canon in Frombork, Poland. This administrative position guaranteed his financial security as he pursued his work in astronomy. Copernicus obtained a leave of absence in 1496 in order to continue his studies. He spent several years in Italy studying law and medicine at the universities of Bologna and Padua, and received a doctorate in canon law at Ferrara in 1503. Copernicus returned to Poland in 1503 and assisted his uncle in the administration of the diocese, and in the defenses against the invading Teutonic Knights. Sometime around 1510 he wrote an essay known as the Commentariolus, in which he first articulated the principles of his heliocentric theory.
Copernicus was a skilled administrator, physician, scholar, diplomat, and mathematician in addition to his work in astronomy. He was invited to take part in the Fifth Lateran Council’s commission on calendar reform in 1515. In 1517 he published his theory on monetary reform. During this time he also observed the heavenly bodies and began his major work, De Revolutionibus, publication of which was delayed by the author for many years due to its implications. Copernicus has been compared to Charles Darwin in this regard. In 1539, Copernicus began to study with a young mathematician named Georg Joachim Rheticus. Rheticus published a short introduction to the Copernican system, Narratio Primo, and then finally convinced Copernicus to publish his theory in detail. It is said that Copernicus held a copy of De Revolutionibus in his deathbed on May 24, 1543.
The Copernican Revolution
Copernicus’s theory is often seen as a decisive moment in time. In replacing the earth with the sun as the center of the universe, he revolutionized humankind’s understanding of science and religion. The heliocentric theory was a fundamental part of the transition of Western thought from the medieval to the modern period, as it transformed humankind’s position in the universe and relationship to God. Like Darwin’s theory centuries later, the Copernican system ignited controversies in religion, philosophy, and the social sciences. Its implications extend far beyond astronomy. Critics of Copernicus argued that his theory diminished humanity’s place in the universal order and removed humankind as the center of God’s creation. Copernicus anticipated a negative reaction to his work because of its disagreements with the Bible. He included a dedication to Pope Paul III (1534-1549), most likely as an attempt to circumvent criticism. Management of the printing of De Revolutionibus was given to a Lutheran minister named Andrew Osiander. Osiander added his own anonymous preface in which he claimed that Copernicus was merely suggesting a hypothesis rather than a factual description of the heavenly bodies. De Revolutionibus circulated widely throughout Europe, and a second edition was released in 1566. Though Copernicus can be seen as the heir of Ptolemy, the elapse of nearly 2 millennia makes his contribution all the more significant. Copernicus’s work, therefore, has been deemed a revolution.
Influence
During the 16th century, most people still found it difficult to believe that the earth was in motion. Even other astronomers could not accept Copernicus’s theory in whole. In 1588, the Danish astronomer Tycho Brahe developed a compromise position in which the earth remained motionless. Others, such as Johannes Kepler and Galileo, accepted the basis of the heliocentric theory and supported parts of it with their own work. Galileo was forced by church authorities to renounce the Copernican system. The English scientist Sir Isaac Newton used the Copernican system as the basis for his laws of gravity. Newton sought to confirm the Copernican system with his own complex calculations on the motion of objects. In time, many people came to accept as accurate the heliocentric model of the universe proposed by Copernicus.
See also Bruno, Giordano; Cosmogony; Darwin, Charles; Einstein, Albert; Galilei, Galileo; Hawking, Stephen;
Newton, Isaac; Nicholas of Cusa (Cusanus)
Further Readings
Blumenberg, H. (1987). The genesis of the Copernican world (R. M. Wallace, Trans.). Cambridge: MIT Press.
Kuhn, T. S. (1985). The Copernican revolution: Planetary astronomy in the development of Western thought. Cambridge, MA: Harvard University Press.
Westman, R. S. (1975). The Copernican achievement.
Berkeley: University of California Press.